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A continuous polyhedral evolution of octahedron through 
icosahedron to cuboctahedron, previously described, is ex- 
tended in the present paper to primitive and body-centered 
cubic crystal lattices. The evolution of these lattices describes 
displacive crystallographic phase transitions, with a monodi- 
mensional order parameter. It is shown that both the supercon- 
ductor alloys of A15 type and some perovskite structures of 
icosahedral type can be described as phases in these transitions. 
Besides, some of these compounds present two or more phases, 
where the above evolution exists in between, for example, the 
observed quasi-continuous transition from Pm3m to Ira3 in the 
perovskite NaxWO3. In other cases, such transition has not 
been observed, but we suggest that it could exist, as for instance 
between the phases Pm3m and Pro3 observed in the A15-type 
superconductor HgTi3. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

An octahedron can evolve continuously to a cuboctahe- 
dron through an icosahedron (1). The procedure is shown 
in the Fig. l ,  where the three radiating vectors defining 
the vertices of the octahedron are split at an angle 2o~, 
each one perpendicular to the next vector in turn. The 
vector-radiation, defined by a unique parameter  a or t = 
tan o~, remains isotropic (1) along the evolution, that is, 
the projection of the half radiation along any direction is 
constant, which probably implicates stability for the atomic 
cluster associated with the polyhedra. We call this a polyhe- 
dra t evolution (PTE), where the interval 0 -< t -< 1 will 
be considered to keep the generated polyhedron inscribed 
within a cube, which is taken as unit edge (1 x 1 x 1). 
There are three singular polyhedra in that interval: the 
octahedron (Fig. l (a))  for t = 0, the icosahedron (c) for 
t = 1/~- = 0.618 (T = ½ (1 + N/5)), and the cuboctahedron 
(d) for t = 1. Other values of t correspond to deformed 
icosahedra, as it is shown in Fig. l(b). Note that the atomic 
clusters Cx generated by atom/vertex substitution are C6 
for t = 0 but C12 for t # 0. Hence, t = 0 becomes just a 
theoretical singular point when an atomic-cluster evolution 
is considered. 
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The icosahedral structure included in a PTE deserves 
special attention. It appears in many interesting structures, 
such as the Frank-Kasper  structures (2), some intermetal- 
lic compounds with giant cells (2), boron (3a), quasi-crys- 
tals (4), and microclusters (5). In fact, packing potential 
calculations on clusters from 13 to 200 atoms (6) show 
that icosahedral coordination is even more stable than 
cuboctahedral coordination. 

Moreover,  a PTE has been used to describe a continuous 
transition between crystal and quasi-crystal (7), and it has 
also been proposed to describe the transition between crys- 
talline cuboctahedral clusters and multiple twinned icosa- 
hedral clusters (8). 

In the present work we have used the PTE to describe 
a displacive crystallographic phase transition, or crystallo- 
graphic t evolution (CTE), t being the monodimensional 
order parameter.  From a PTE we have generated two 
crystal lattices, where the corresponding CTE are defined. 
The first has the primitive cubic unit cell (of dimensions 
1 x 1 x 1) shown in Fig. 1, which inscribes the evolutionary 
polyhedron. In this lattice, however, the polyhedra vertices 
of neighboring cells move closer as t approaches 1. In order 
to avoid this, we generated a second cubic lattice with 
double edges (2 x 2 x 2), which is also body centered 
(bcc), so as to increase the density. Figure 2 shows this cell, 
where two evolutionary icosahedra are the net contents. As 
it will be shown, both lattice types, decorated with mobile 
atoms at the polyhedra vertices and with fixed atoms in 
the centers of some polyhedra or holes, describe real com- 
pounds for particular values of t. 

Moreover,  a CTE could be the mechanism for reported 
or nonreported phase transitions in such compounds. In 
particular, the CTE of the primitive lattice describes a 
possible phase transition for the A15-type alloys, the first 
structural type of superconductors, whereas the CTE of the 
body centered lattice describes an interesting perovskite 
phase transition, which could also be applied to the second 
structural type of superconductor (YBa2Cu306+x), as it is 
based on the perovskite structure. 

In our opinion, the importance of finding a possible 
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FIG. 1. The polyhedra t evolution: (a) octahedron for a = 0 ° or t = 
tan o~ = 0, (b) deformed icosahedron for a = 20.91 ° or t = 1 - 1/~-, 
(c) regular icosahedron for c~ = 31.72 ° or t = 1/7, and (d) cuboctahedron 
force=45 ° o r t =  1. 

The first CTE described involves transitions Pm'3rn- 
Prn-3-Pm-3n-Pm-3-Pm~_m, where Pm3m and Pm3n are sin- 
gular points while Pm3 is the general symmetry.  As Pm3 
is the maximal nonisomorphic I[2]-subgroup of both  Pm3m 
and Pm3n, a displacive transition can exist in between. 
The second CTE described involves transitions Im-3m- 
Im3-Pm-3m, where Im3m and Pm3m are singular points 
in the general Im3 symmetry.  In this case, since Im3 is a 
subgroup of Im3m, the first transition can be displacive, 
however  the second transition Im-3-Pm-3m, which is one 
of perovskite type, could not be as there is no such sub- 
group relationship. 

This problem was discussed by Aleksandrov (9) in his 
paper  "The  Sequences of Structural Phase Transitions in 
Perovskites," based on a previous work of Glazer (10) and 
in the f rame of Landau 's  theory. Aleksandrov pointed out 
that " among  irreducible representat ions of Pm3m, there 
are two which correspond to modes of the perovskite lattice 
associated with octahedral  tilting only. When these modes, 
M3 and R25 , become soft mode  of the lattice, the phase 
transition will arise." Between the possible s p a c e  group 
transitions, Aleksandrov adds that " the  Pm3m-Im3 is a 
transition that can be continuous (though it is not necessar- 
ily so)," which is associated with the condensation of an 
Ms soft mode. 

crystallographic phase transition in superconductors is that 
it could induce a parallel evolution on the critical tempera-  
ture To. 

The following sections include some discussion about  
displacive crystallographic phase transitions involving 
changes in the space groups. Hence,  a suitable reference 
to Landau 's  theory should be made. 

FIG. 2. The double edge (2 x 2 X 2) cubic cell, showing the packing 
of two icosahedra in the space group Ira3. 

2. THE CRYSTALLOGRAPHIC t EVOLUTION (CTE) IN 
A PRIMITIVE (1 x 1 x 1)LATTICE 

2.1. Crystal Structures Predicted by a Primitive CTE 

During a CTE, the space group of the primitive lattice 
is ingenera l  Pro3, although it becomes Pm3n for t = ½ and 
Pm3m for t = 0 or 1. In Pro3 we consider the special 
positions a(rn3) (0, 0, 0), b(m-3) (½, ½, 1), and 6 x g(mm) 
(x, ½, 0 ) 0  as potential  sites for atomic positions. We call 
A the a tom on a, B that on b, and C that on g, the last 
generating 6 in the unit cell by symmetry.  C are the mobile 
atoms during the CTE (t = 1 - 2x) which form icosahedra 
sharing faces, as are shown in Fig. 3. 

For a given t value, in a CTE, a hypothetical structure is 
predicted. For t = 0 (Fig. l (a)) ,  the packing of C octahedra 
(OCT) around B and C cuboctahedra (CUBOC)  around 
A fill the space with the packing ratio (OCT)~(CUBOC)~,  
which is the known perovskite structure with the formula 
ABC3. For t = 1 (Fig. l (d)) ,  OCTs surround A and 
CUBOCs  surround B giving the perovskite BAC3. For 
intermediate values of t (Figs. l (b) ,  1(c), and 3), a different 
type of crystal structure appears. A and B are surrounded 
by complementary  deformed C icosahedra ( I C O S D A  and 
ICOSDB),  which have 8 equilateral faces perpendicular  
to the three-fold axes of the cell plus 12 isosceles faces. 
I C O S D A  and ICOSDB pack sharing equilateral faces, 
while I C O S D A / I C O S D A  and I C O S D B / I C O S D B  share 
the uneven edges. The isosceles faces form deformed 
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FIG. 4. 
lattice. 

The dodecahedral structure in the Pm-3 (1 × 1 × 1) cubic 

FIG. 3. The packing in the space group Pm3, showing two regular 
C icosahedra around B and one complementary irregular C icosahedron 
around A. The dotted line closes one of the deformed tetrahedra which, 
together with both icosahedra, fill the space. 

te t rahedra  (TETD) ,  like the one shown in Fig. 3, 
and the whole  space is filled with the packing ratio 
( I C O S D A ) I ( I C O S D B ) I ( T E T D ) 6 .  We  call this ar- 
r angement  the icosahedral  packing,  where  the a tomic  
formula  is A B C 6 .  

For  t = ½, I C O S D A  = I C O S D B  and, if we character ize 
a toms for  their geometr ical  envi ronment ,  we have A = B 
and hence  the c o m p o u n d  A C 3 .  A n o t h e r  special value is 
t = 1/7 = 0.618, where  I C O S D B  becomes  regular  and 
I C O S D A  is quite deformed,  as shown in Fig. 3. Note  that  
being complemen ta ry  icosahedra,  I C O S D A  for  t = 1/7  is 
equal to I C O S D B  for t = 1 - 1/7  ( ro ta ted  90°), as shown 
in Figs. l (b) ,  l (c) ,  and 3. Besides, the vertices of  I C O S D A  
for  t = 1/7  also be long to an incomple ted  regular  dodeca-  
hedron,  which is completed ,  in Fig. 4, by adding eight 
new vertices C '  at posit ion 8 × i(3) (x, x, x)©, being 
x X / 3  = A C '  = A C  = ½V'(1 - 1/7) 2 + 1 -~ 0.535. This sug- 
gests a different packing consisting of  a cubic primitive 

lattice of  pen tagona l  dodecahedra  sur rounding the A 
atoms, which share edges along the three cubic axes, while 
the eight C '  fo rm a cubic coord ina t ion  of  B, where  
B C '  = X /3 /2  - A C .  We call this a r rangement  the dodeca-  
hedral  packing,  which gives a c o m p o u n d  with the formula  
A B C 6 C ~ .  For  t = 1 - 1/7, A and B change their roles, and 
dodecahed ra  sur round  B atoms. 

A n y  geometr ical  feature  of  the evolut ionary  structures 
in a C T E  is a funct ion of  t. Thus,  in the icosahedral  packing, 
the po lyhedra  volumes are V ( I C O S D B )  = (t 3 + 3t + 1)/ 
6, the same for  V ( I C O S D A )  replacing t with 1 - t, and 
V ( T E T D )  = (1 - 0 ¢ 1 2 .  The intera tomic distances are 
B C  = ½X/-~ + 1, A C  = ½X/(1 - t) 2 + 1 ,  and C C  = t or 
C C  = 1 - t for the two uneven  edges, while 
C C  = ½X/2(t 2 - t + 1) for  edges of  equilateral  faces. Thus, 
the evolut ion of  the packing in a CTE,  as t changes,  can 
be fol lowed and is shown in Table  1. In the same way, 
the structural  geomet ry  of  dodecahedra l  packing can be 
calculated as a funct ion of  two variables, t and x. Table  1 
also includes the geomet ry  for  a regular  dodecahedron  
a round  the A position. 

The  a tomic  coord ina t ion  of  the a toms in the ne twork  
is ano ther  chemical  characterizat ion.  In the icosahedral  
packing, A and B coord ina te  with 12C, and C with 2A, 
2B, and 10C (two uneven CCui edges plus eight equal C C  

TABLE 1 
Some Geometrical Values of the Structures Produced by a CTE in the (1 x 1 x 1) Pro3 

Lattice, for Special Values of t 

t = CCul CCu2 CC BC AC Ve x 6 Va × 6 VT X 6 

0 1 0.71 0.50 0.71 1 5 0 
0.25 0.75 0.64 0.52 0.63 1.77 3.67 0.09 
0.50 0.50 0.61 0.56 0.56 2.63 2.63 0.13 

1/r = 0.62 0.38 0.62 0.59 0.54 3.09 2.20 0.12 
"(DODEaroundA) CC= CC' =0.38, BC' = 0.33, A C = A C '  =0.54, V(DODE) × 6 = 2.56 

0.75 0.25 0.64 0.63 0.52 3.67 1.77 0.09 
1 0 0.71 0.71 0.50 5 1 0 

Note. CC are the icosahedron edges in equilateral faces, whereas CCui are the uneven edges. Vi are the volumes 
Va = V(ICOSDB), VA = V(ICOSDA), and VT = V(TETD). As a reference, the volume of the sphere inscribed 
in the cell is Ir/6. 
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TABLE 2 
Some Relative Atomic Radii and Packing Densities of a CTE in the Primitive 

Lattice (1 x 1 x 1), for Icosahedral Compounds ABC6 

t r A r8 rc p(A + C) p(B + C) p(A + B + C) 

0 1 0.43 1 0.74 0.57 0.75 
0.25 1 0.81 0.27 0.50 0.30 0.75 
0.50 1 1 0.81 0.52 0.52 0.64 
1/~- 0.85 1 0.48 0.35 0.44 0.61 
0.75 0.81 1 0.27 0.30 0,50 0.75 
1 0.43 1 1 0.57 0,74 0.75 

edges of equilateral faces). In the dodecahedral  packing, 
A coordinates with 20(C + C' ) ,  B with 8C' ,  C with 2A, 
2B, 1C, and 4C' ,  and C'  with 1A, 1B, and 3C. 

This gives a description of the crystal structure for the 
theoretical compounds  ABC3, ABC6, AC3, and ABC6C~ 
and some others if we add the possibility of having perma-  
nent vacancies at any point or statistical disordered atoms 
between points. The viability of the theoretical crystal, 
structures can be tested by comparing their geometry  with 
those present  in real structures. Hence,  we calculated the 
theoretical atomic radii for A, B, C, and C' ,  which were 
adjusted beginning with the shortest CC interatomic dis- 
tances. Besides, in order to predict real structures, we 
found it to be significant to calculate the packing density, 
p(t), which is the sum of the spheric-atom volumes in the 
unit cell. As a reference point, we list here some densities 
for equal-sphere packings: 0.740 for face centered cubic 
(fcc), 0.698 for body centered tetragonal,  0.680 for body 
centered cubic (bcc), 0.608 for hexagonal,  and 0.524 for 
cubic primitive. 

Table 2 gives the relative atomic radii and packing densi- 
ties of some theoretical icosahedral compounds  ABC6, 
where the atoms are assumed either in A + C, in B + C, 
or in A + B + C points. A similar table for dodecahedral  
compounds,  ABC6C~ or ABC14, would depend on two vari- 
ables, t and x. However ,  if we restrict dodecahedra  to have 
equal CC' = CC edges, a unique variable t re- 
mained, because then x X/3 = AC' = (2 - t) X/3/6 + 
ac/5t 2 - l l t  + 5 ~/6/6 in the allowed interval (t >- 0.572 for 
AC' >- 0 and t -< 0.642 for CC' = CC). Table 3 shows the 

structural geometry of some equal-edge dodecahedral  
compounds,  where t = 1/-c for regular dodecahedra.  

Tables 2 and 3, extended to more  t values, are com- 
pound-viablity tables where, for reasonable relative atomic 
radii, the higher p(t) probably corresponds to the more  
realistic compound.  Hence,  real structures in a CTE, be- 
sides the perovskites,  would probably have t values not 
very different from ½. Values of t close to 0 or 1 would 
imply very short CC distances, which could be only possible 
by assuming statistical disordered structures. 

2.2. Observed Crystal Structures, as Predicted by a 

Pm3 CTE 

Inversely, we searched for real compounds  with formulas 
ABC6, AC3, or ABC6C~ in the space groups Prn3 or Prn3n. 
For  this purpose, we used the ICSD data bank for inorganic 
compounds (11), the Landol t -B6rs te in  volume for metallic 
and intermetallic compounds (12), and two classical books 
of Pearson (2, 13) on metals and alloys. We will not give 
a list of all the material  found, but just some representa-  
tive compounds.  

There  exist about  70 icosahedral compounds  of formula 
AC3 like HgTi3, and some other ABC6 like GaSbV6 or 
Nb0.4Gel.6Nb6, both  Pm-3n or Pro-3 with t = ½, which are 
alloys of the /3-W type or the A15 Strukturberichte-type. 
The AC3 compounds are superconductors,  where C be- 
longs to IVB, VB, or VIB, while A belongs to VIII ,  IB, 
IIB, I I IA,  IVA,  or V A  subgroups (some representatives 
are NiV3, AuTi3, HgZr3, GaW3, SiCr3, or AsV3), all with 

TABLE 3 
Some _Relative Atomic Radii and Packing Densities of a CTE in the (1 x 1 × 1) 

Pm3 Lattice, for Compounds ABC14, with Equal C-C Dodecahedral Edges 

t rA rB rc p(A + C) p(B + C) p(A + B + C) 

0.57 1 0 0.64 0.73 0.58 0.73 
0.60 1 0.23 0.59 0.63 0.47 0.63 
1 / r 1 0.41 0.56 0.58 0.42 0.59 

0.64 0.72 1 0.62 0.38 0.44 0.48 
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the expected atomic-radii ratio of rc/rA ----- 1. Nevertheless, 
for t = ½, Table 2 gives rc/r.4 = 0.81 for a theoretical AC3 
compound with spherical atoms. Pearson (2) justified this 
discrepancy by the analysis of their near-neighbor diagram, 
showing that the/3-W packing is due to the strong A - C  
contacts (of nonspherical atoms), which cause a lower rc/ 
ra ratio. We suggest that the discrepancy can also be due 
to the greater electronegativity of A vs C which, would 
produce charge transference giving rz > rc+. Besides, this 
ionization would account for the small lattice contraction 
found in these alloys as compared with the parent metallic 
lattices. We suggest that, by small displacements of the C- 
a toms,some of the assumed Pm3n crystals could actually 
be Pm3 with t ~ ½, giving a lower rc/rA ratio and more 
charge in the metals. If we assume that Tc depends on the 
local charges of the alloy, a structural t-evolution would 
involve a continuous Tc evolution. 

There also exist some dodecahedral  compounds of the 
formula ABC6C~, for example, NaPt304 which crystallizes 
in Pm3n, (Co0.37Na0.t4)Pt304 in Pro3, or Li0.64Pt304 in P43n, 
where Pm3 and P43n are subgroups of Pm3n. These struc- 
tures present polytypes which could also be described as 
phases in a CTE. 

2.3. Possible CTE-like Phase Transitions between 
Observed Pm~7-Phases 

We found references of the existence of different phases 
for some AC3 alloys, such asHgTi3 and HgZr3 (14), which 
present the 6 phase in Pm3m (fcc-like) with the AuCu3 
structural type and the 3~ phase with Pm3 or Pm3n symme- 
try, or AuTi3, which is Pm3n but becomes Pm-3m when it 
contains some impurities. There are also two phases for 
each W, Cr, and muV3, one with symmetry Im3m (bcc- 
like) and the other with Pm-3 or Pm3n (in order to include 
a bcc-like lattice in a CTE, we can assume that it is a 
stretched fcc-like lattice). And finally, there are references 
for martensitic transitions in SiV3, SnNb3 (15), and GaV 3 
(16) from Pm3n phases to tetragonal P42/mnm phases. 
Although none of these references describe any phase tran- 
sition, we suggest that a CTE could account for the transi- 
tions between the existing phases. 

3. THE CRYSTALLOGRAPHIC t EVOLUTION (CTE) IN 
A BCC (2 x 2 x 2)LATTICE 

3.1. Crystal Structures Predicted by a bcc CTE 

As we mentioned in the introduction, a CTE in a primi- 
tive (1 x 1 X 1) cell produces collapses between the C 
atoms for t close to 1 or 0, so the only way to imagine 
such structures is by assuming statistical disorder for those 
atoms. Another  obvious way to prevent collapses, for t 
close to 1, is by considering a double-edge (2 x 2 x 2) 
cell which, in order to increase the density, can be body 

FIG. 5. The icosahedral-type perovskite packing in Im3. 

centered (as face centered still producesatomic collisions). 
Such CTE preserves the space group Im3. The cell contents 
for t = 1/T is shown in Fig. 2, where we consider possible 
atomic positions: B in 2 x a(m3) (0, O, 0), B' in 6 x 
b(mmm) (0, ½, ½)©, A in 8 x c(3) (¼, ¼, ¼)~, and C in 24 x 
g(m) (0, ¼, z)(3, where z = t/4. The packing, shown in Fig. 
5, forms a zeolite-like perovskite structure, where the B 
atoms would be in the small cavities of C ICOSD, which 
are connected through antiprisms (ANTP) centered in A. 
The whole structure leaves big holes centered in B' ,  which 
have the form of a concave-icosahedra, as shown in Fig. 
6. The general formula of this structure is AsB2C24B~ = 

AaBC12B;, where, like in the (1 × 1 × 1) cell, we can 
assume some empty positions. The space is filled with the 
packing ratio (ICOSDB)I(ANTP)4(B'-hole)3.  

For t = 1, the structure becomes the perovskite ABC3 
in a (1 × 1 × 1) Pm3m cell. For t close to 0, there would 
be again collision between the C atoms; and for t = 0, the 
ICOSDs become octahedra, which are connected with long 
antiprisms, leaving star-shaped big holes around B' ,  in this 

FIG. 6. The concave-icosahedral form of the structural large hole 
around a B' position, where the vertices are C atoms. 
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FIG. 7. The contents of the Im3 dodecahedral packing in the double 
edge (2 x 2 x 2) cubic cell. 

case having the formula A8B2C12B~ in a (2 X 2 X 2) Im3m 
cell. For  t = 1/~-, the small holes around B are regular 
icosahedra (which can also be seen as produced by the tilts, 
around (111), of the associated AC6 perovskite octahedra 
(17)). For t = 1 - 1/~-, we can transform the 
ICOSDs  around B to regular dodecahedra  by adding C'  
a toms at the positions 16 x f(3) (x, x, x)©, for x = 0.1545, 
as we did for the (1 x 1 x 1) cell. Figure 7 shows the 
contents of the unit cell (2 x 2 x 2), and Fig. 8 shows the 
bcc packing of the dodecahedra  around the B atoms, which 
connect through the bridged A atoms, leaving very big 
holes for B '  atoms. The formula for full atomic occupation 
is AsB2C24C~6B~ = A4BC12C~B~. Hence,  like in the (1 X 
1 x 1) cell, there would be both icosahedral and dodecahe- 
dral packing in the (2 x 2 x 2) cell. 

In the icosahedral packing, A coordinates with 6C, B 
with 12C, B '  with 4C, and C with 2A + 1B + 1B'  + 5C. 
While in the dodecahedral  packing, A coordinates with 

FIG. 8. A view of the lm3 dodecahedral packing, which, after a 
convenient dodecahedral closening, could describe a low density bcc 
zeolite structure. 

2C' ,  B with 12C + 8C' ,  B '  with 4C, C with 1B + 1B'  + 
1C + 2C' ,  and C' with 1A + 1B + 3C. 

Like in the (1 x 1 x 1) cell, the structural geometry can 
be calculated as a function of t, thus, the volumes of the 
space-filling polyhedra are: V( ICOSDB)  = (t 3 + 3t + 1)/ 
6, V(ANTP)  = (1 + (1 - 03)/6, and V(B'-hole)  = (t 3 - 
4t 2 + 3t + 5)/6; and V ( D O D E D )  = [(t 3 + 3t + 1)/6] + 
2(t 2 - t + 1)(x - (1 + t)/12) for deformed dodecahedra.  

The viability of these theoretical structures could be 
estimated with the help of their calculated atomic radii 
and packing density. As we did for the (1 x 1 × 1) packing, 
beginning with the shortest CC interatomic distances, one 
can assign atomic radii and calculate the corresponding 
packing densities. Table 4 shows these values, calculated 
in the icosahedral packing, for some values of t. A similar 
table for dodecahedral  packing is not shown because two 
variables, t and x, are involved. Instead, we give, as an 
example,  the geometry  for the case of regular dodecahedra.  
In this case, like in Pm3, the relative atomic radii are 
rB = 1, rc = 0.56, and rA = 0.41, and the packing densities 
for different occupations, being quite low, are p(AsB2C4o 
B~) = 0.328, p(B2C4oB~) = 0.316, and p(AsB2C4o) = 
0.200, respectively. 

It is relevant in Fig. 5 that the regular octahedral  coordi- 
nation of the A atoms in perovskite (for t = 1) becomes 
irregular (ANTP)  when t decreases. This would increase 
the A anisotropy, decreasing the viability of such hypothet-  
ical compounds.  In order to restore regular octahedra,  the 
ICOSDs should move closer by a factor of X/t 2 - t + 1/ 
(2 - t) applied to their original distance. This corresponds 
to a cell contraction of ( V F  - t + 1 + t + 1)/3, if the size 
of the ICOSDs remains constant. The values of those cell 
contractions are significant; for instance, 2/3 for t = 0, 0.752 
for t = 0.382, 0.622 for t = 1, 0.83 for t = 0.618, and 1 for 
t = 1. As we will show in Section 3.2., this contraction 
actually occurs in real compounds where the C atoms are 
in positions g(0, y, z), instead of g(0, ¼, z), where y -> ¼ -> 
z and t = z/y. This means that, to account for real struc- 
tures, a CTE should be coupled with a cell contraction, 
which considerably increases the packing density. For ex- 
ample, if we consider structures with only C atoms, before 
the contraction their densities would be p(ICOS) = 0.37 
and p ( D O D E )  = 0.15, while after contraction they would 
be 0.65 and 0.25, respectively. 

3.2. Observed Crystal Structures, as Predicted by a 
Im3 CTE 

Looking for icosahedral structures, we per formed an 
ICSD (11) searching for Im3 structures with atoms on 
g(C) and on some, or all, of a(B), b(B') ,  and c(A) special 
positions. There  were in total 64 compounds: 40(A + C) 
with atoms on A and C, 16(B + B '  + A + C), 5(B'  + 
A + C), and 3(B + A + C), some of them shown in the 
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TABLE 4 
Some Relative Ato_mic Radii  and Packing Densities of a CTE in the (2 x 2 x 2) 

Im3 Lattice, for Icosahedral  Compounds A4BC~2B~ 

t rA rB rc p(A + B + C) rB rc p(B + C) 

0 1 0.41 1 0.48 0.41 1 0.29 
0.25 1 0.82 0.26 0.73 1 0.32 0.27 
0.40 1 0.89 0.52 0.50 1 0.58 0.26 
0.50 1 1 0.81 0.44 1 0.81 0.32 
1/~" 0.73 0.90 1 0.51 0.90 1 0.46 
0.75 0.62 0.96 1 0.56 0.96 1 0.53 
0.90 0.49 0.99 1 0.66 0.99 1 0.64 
1 0.41 1 1 0.76 1 1 0.74 

first co lumn of  Tab le  5 wi th  the i r  geome t r i ca l  p a r a m e t e r s .  
T h e  m i n i m u m  o b s e r v e d  va lue  of  t is =0.4 ,  and  the re  
a re  a b o u t  20 c o m p o u n d s  with nea r  i cosahed ra l  coo rd ina -  
t ion of  B or  t ~- 1/z,  15 c o m p o u n d s  with  t = ½, 9 wi th  
t = 1 - l /T, and  only  2 wi th  t -~ 1, c lose to  the  
pe rovsk i t e  s t ructure .  

A m o n g  the  64 c o m p o u n d s ,  we found  the fi l led s t ruc tures  
of  type  BB~AnC12,  which are  fe r roe lec t r i c  pe rovsk i t e - s t ruc -  
tures  l ike CaCu3Mn4012. In  this c o m p o u n d ,  the  J a h n -  
Te l l e r  large  ca t ions  Cu 2÷ in pos i t ions  B '  p r o d u c e  an O 
o c t a h e d r a  tilt  o f  = 1 9  ° a r o u n d  each  x, y, and  z d i rec t ions  
(18), which i ndeed  c o r r e s p o n d s  to  a t - 1 /Tin  a CTE.  A l s o  
i m p o r t a n t  a re  the  " e m p t y "  s t ruc tures  of  t ype  BC3,  l ike the  
s em i conduc to r  Coms3. 

I f  we c o m p a r e  the  o b s e r v e d  g e o m e t r y  of  any  of  the  64 
c o m p o u n d s  with the i r  t heo re t i ca l  s t ruc tures  p r e d i c t e d  in 
a CTE,  we conc lude  tha t  the  f o r m e r  have  b e e n  c o m p r e s s e d  
in o r d e r  to get  m o r e  r egu la r  C o c t a h e d r a  a r o u n d  A.  T h e  

o b s e r v e d  cell  con t r ac t ion  d e p e n d s  on the C a t o m  posi t ion ,  
g(0, y, z), its va lue  be ing  fcon = 0.25/y, since yao = 0.25at, 
whe re  ao is the  o b s e r v e d  cell  and  at is the  a s sumed  cell 
in the  CTE.  This  con t r ac t ion  is g rea te r  (leon = 0.76) for  
occupa t ions  B A C  or  A C  than  for  occupa t ions  B B ' A C  or  
B ' A C  (fcon = 0.84). Bes ides ,  we ca lcu la ted  the  res idua l  
contract ionsfres  = "X/t 2 - t + 1 / ( (3 /4y )  - 1 - t), which were  
still necessa ry  to  get  r egu la r  o c t a h e d r a  f rom the o b s e r v e d  
s t ructures .  These  va lues  were  close to i (0.95 -< fres --< 1.25). 
F igures  9, 10, and  11 show the  plots  (y + z) = f ( t ) ,  fcon = 
f ( t ) ,  and  fres = f ( t ) ,  respect ive ly ,  for  the  64 compounds .  
T h e y  show some  re l evan t  fea tures :  (i) In  genera l ,  0.49 -< 
y + z -< 0.50, a l though  for  t -~ l/T, y + Z ~-- 0.48 and  y ~-- 
0.30; (ii) f~on grows l inear ly  with t, a l though  with some  
dev ia t ion  for  t ~- l /T;  and  (iii) fr~s dec reases  as t grows, 
f rom 1.25 to 1, again  wi th  the  excep t ion  of  t = 1/T where  
fres < 1. Hence ,  the  i cosahedra l  c o o r d i n a t i o n  of  B for  t ~ 1/ 
T, bes ides  be ing  m o r e  f requen t ,  p resen t s  specia l  geome t ry ,  

TABLE 5 
Some Compounds  with Icosahedral-Perovskite Structure, Which Correspond to Phases of a 

CTE in a Ira3 Lattice, for a Given t 

Formula Occupation y t fco, fr~s a 

Na54WO3 (B + B ' ) A C  0.261 0.913 0.956 1.003 7.656 
NdCu3Ti3FeO12 BB 'AAC 0.302 0.589 0.829 0.971 7.436 
CaCuaMn4012 BB'AC 0.303 0.601 0.824 1.001 7.241 
Bi.67Cu3Ti4012 BB 'AC 0.296 0.601 0.845 0.935 7.418 
CoAs3 AC 0.350 0.429 0.714 1.217 8.189 
ReO3 AC 0.273 0.831 0.917 1.007 7.410 
IrAs3 AC 0.348 0.418 0.719 1.177 8.467 
RhP3 AC 0.355 0.393 0.705 1.209 7.995 
NbO3H AC(C + C) 0.289 0.654 0.865 0.935 7.436 
MosW.503D.80 AAC(C + C) 0.292 0.712 0.856 1.041 7.587 
ThFe4Pa2 BAC 0.352 0.428 0.710 1.239 7.800 
Cul.sTaTiO6 B ' A A C  0.309 0.601 0.808 1.059 7.43 

Note. The site occupation corresponds to the atomic order in the formula, thus, the first line shows that 0.54Na 
are distributed among the positions B and B'. The variable y is the coordinate of the C atom in g(0, y, z). f~on is 
the observed cell contraction, fres is the residual approximation factor between icosahedra, still necessary to have 
regular octahedra around the A positions, a is the observed unit cell. 
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where the octahedra around A are too compressed, so 
as they would have to be stretched back (fre= < 1) to 
become regular. 

Looking for dodecahedral structures in a CTE, we 
searched Im3 compounds with atoms on positions C(24 × 
g) and C'(16 x f ) .  We did not find such isolated dodecahe- 
dral structures, which is not strange because they would 

have had densities that were too low. Nevertheless, we 
found eight compounds where such dodecahedral frame- 
work was included in a more complex structure. For exam- 
ple, the alloy DyCd6, where Dy  atoms fill the C positions 
while some Cd are in C', has t = 0.384 and C' at (0.16, 0.16, 
0.16), which is very close to being a regular dodecahedron 
C12C8. 
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On the other hand, there are about 25 Bi compounds 
which, like y-Bi203, crystallize in the space group •23, 
presenting intermediate structures between icosahedral 
and dodecahedral.  For  example, GeBi12020, with the struc- 
tural formula BC12C~C~XI2  , where there are Bi ICOSD 
surrounding Ge, has t -~ 0.56, fcon= 0.78, and fres --~ 1. 
Besides, some oxygens in C' are close to the equilateral 
Bi3 faces; the B' and A positions are empty and there are 
oxygens in general X positions. These compounds present 
either one chirality or the inverse, they are piezoelectric 
and have many interesting properties (19). 

3.3. Possible CTE-like Phase Transitions between 
Observed Im-3-Phases 

There are some compounds showing both Pm3m-perov- 
skite and Im3 phases, where this could be due to a phase 
transition like CTE or a CTE plus lattice contraction. Pe- 
rovskites are corner linked octahedra BX6 in compounds 
ABX3, and there is a classification of those perovskite 
phases arising from different tilts of the regular octahedra 
BX6 (10). Each phase corresponds to different octahedra 
rotations around their three four-fold axes; thus, a°a°a ° is 
the undistorted perovskite with symmetry Pm3m in the 
cell (1 × 1 x 1), while a+b+c + corresponds to three different 
tilts producing a body centered Immm double-cell (2 x 
2 x 2) structure. The + sign indicates the same sense of 
rotation for all vertex-centered octahedra along one axis, 
whereas a - sign indicates alternate rotations. Glazer (10) 
pointed that out of the 23 possible tilts systems, only 9 
have been found to occur, the majority being a-b+a - and 

a a a .  He also pointed that it would be extremely interest- 
ing to find in particular the transition a+a+a +, which indeed 
would be a Im3 CTE coupled with the lattice contraction. 
In fact, some years later, Clarke (20) discovered the a+a+a + 
phase transition in NaxWO3 (0.62 - x <- 0.94). Using pre- 
cise lattice-parameter measurements, he found the follow- 
ing new sequence of a perovskite quasi-continuous phase 
transition with the temperature: 

Pm-3m 160°C 70°C> > C4/mmb I4/mmm 
aOaOa 0 aOaOc + a°b + b + 

2°°> Im3 18°°> (Im-3). 
tl+a+a + 

Although, as mentioned in the Introduction, Aleksan- 
drov (9) considered possible a displacive Pm3m-Im-3 tran- 
sition, in this case it was observed to be impossible to 
pass continuously through C4/mmb-I4/mmm-Im3 (space 
groups without subgroup relationship). 

This phase transition shows an important increase in the 
thermal compressibility, as soon as the 06 (C6) octahedra 
begin to rotate or the W - - O - - W  ( A - C - A )  angles deviate 
from 180 ° (20). Consequently, we also suggest a CTE for 
Re03 (21) which, under a pressure of 2.5 kbar, changes 
the structure from Pm-3m to Im3, increasing its compress- 
ibility by a factor of 10. Thus, this "compressibility col- 
lapse" could also be attributed to the triple rotational soft- 
ening in the Irn3 phase produced by a CTE. In the same 
way, a CTE could also be suggested for IrAs3, which shows 
a nonlinear expansion from 20 to 998°C. 
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Finally, there are two compounds where a CTE could 
also exist. One is the best known solid electrolyte Bi203 
(22), which presents three phases (a, 6, and/3) of fluorite- 
type with Bi in a fcc lattice and the y phase 123 with 
a structure close to GeBi12020. The other candidate is 
PbBi12019, which presents a 123 phase at T < 298 K and 
a Fm3m phase at T = 983 K. 

observed three structural phases of the foam, depending 
on the liquid fraction, and proposed the clathrate foam as 
a stable ordered intermediate phase in the transition from 
the bcc Kelvin foam to the fcc rombododecahedral  foam. 
Hence, we suggest that a CTE on a Pro3 C lattice could 
describe the observed foam transition from the Kelvin- 
type to the clathrate-type. 

4. ANALYSIS OF THE Ira3 FRAMEWORK, PRODUCED 
BY A CTE, AS A ZEOLITE 

Zeolites under solid-state phase transition would give 
us the possibility to control the size of their framework 
holes. Thus, it is of interest to analyze the viability of any 
zeolite-like CTE. 

The hypothetical zeolites consist of the Im3 (o r /23)  C 
frameworks of icosahedral or dodecahedral type (Figs. 5 
and 8), which are produced by a CTE plus cell contraction, 
the latter to homogenize the C-C distances. In both cases, 
there are small holes centered in B sites and large holes 
centered in B',  which, if the B' sites are empty, are quite 
accessible because icosahedra or dodecahedra occupy ¼ of 
the bcc cell. However,  there are some chemical problems 
in considering them as zeolites. Although there are some 
real bcc zeolites, like the synthetic ZK-5 (3b) (formed 
by truncated cuboctahedra sharing hexagonal prisms), the 
coordination number of Si (CN) in these zeolites is 4, as 
expected, which does not occur in our "zeolites." Thus, 
assuming that silicon is in the C sites and oxygen is in the 
center of C-C, the "icosahedral zeolite" would be Si209, 
where CN(Si) = 9, while the "dodecahedral  zeolite" would 
be Silo017 , where there are 2Si with CN = 4 and 3Si with 
CN = 3. 

Especially the SizO 9 icosahedral zeolite seems to be 
chemically improbable, unless one assumes an overlapping 
of CN(Si) = 4 lattices, for example, by decomposing the 
Si icosahedron into chair-type Si-cyclohexanes. 

For the low density dodecahedral  zeolite, one could also 
propose a graphite/diamond structure C2(sp 3)C3(sp 2 ), al- 
though containing extremely strained aplanar C(sp 2). 

5. FOAM TRANSITION DESCRIBED BY A CTE IN A 
Pro-3 C LATTICE 

The Wigner-Seitz  polyhedra around the C vertices in 
the Pm3 lattice, which are bonded by the planes normal 
to the C-C shortest vectors, form a dual foam structure. 
For t = 1, the C vertices build an fcc lattice, and their 
Wigner-Seitz  polyhedra are truncated cuboctahedra form- 
ing a bcc or Kelvin foam, built by 4668 polyhedra cells 
(6 faces of 4 edges and 8 faces of 6 edges). For t -- ½, how- 
ever, the dual foam becomes a clathrate-type built by 
2 × 512 + 6 x 51262 polyhedra in the unit cell. Both foam 
types have been recently reported by Weaire (23), who 

6. CONCLUSIONS 

A large number of diverse and interesting theoretical 
structures arise by extending to a crystal the octahe- 
dron ,--, icosahedron ~ cuboctahedron evolution. These 
crystal structures belong either to a primitive Pm3 or to a 
body centered Im3 lattice, which are the general space 
groups in the above crystallographic evolution. The struc- 
tural geometry and the packing density of the hypothetical 
structures can be calculated as a function of one parameter  
t, and these values are used either to compare theoretical 
with real structures or to predict new ones. The lattice 
transition, as t changes, which we call crystallographic t 
evolution (CTE), is displacive, with a mono-dimensional 
(t) order parameter.  

Tables 2, 3, and 4 extended to more t values hopefully 
would be compound predictive, although for this task it 
would be better to add more chemical arguments. On the 
other hand, if a real CTE would be observed in any com- 
pound, new stable phases could also be predicted. 

Some structures included in the CTE of a primitive Pm3 
lattice correspond to the A15-type superconductor alloys, 
like HgTi3 or GaSbV6. We suggest that a CTE could exist 
between the phases observed for some of them, where 
there would be a relationship between the critical tempera- 
ture Tc and the parameter  t. 

The CTE in a double-edge Im3 (bcc) lattice (plus some 
cell contraction) includes icosahedral-type perovskites, 
such as the ferroelectric CaCu3Mn4012 or the semiconduc- 
tor CoAs3. Among them, those having regular icosahedra 
stand out. We also suggest that a bcc CTE could be the 
mechanism for the observed phase transitions in some Ira3 
compounds, like NaxWO3 or ReO3. Both show a sudden 
structural softening when the evolution begins. Besides, 
the bcc CTE (plus cell contraction) includes a very low- 
density dodecahedral-framework structure, which would 
describe a zeolite Sil0017 , o r  alternatively a theoretical 
graphite-diamond structure. 

Finally, the CTE of the Prn3 lattice would also account 
for an observed foam transition from the bcc Kelvin type 
to other clathrate-type foam. 
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